sexta-feira, 24 de maio de 2013

Sugestões de como motivar seu filho (a) a estudar


Dificuldades de aprendizagem


DIFICULDADES DE APRENDIZAGEM

Camara (2008) no texto 1 do artigo “Dificuldades e Aprendizagem” refere que a literatura sobre as dificuldades de aprendizagem se caracteriza por um conjunto desestruturado de argumentos contraditórios. Apesar do conceito de dificuldades de aprendizagem apresentar diversas definições e ainda ser um pouco ambíguo, é necessário que tentemos determinar ao que fazemos referência com tal expressão ou etiqueta diagnóstica, de modo que se possa reduzir a confusão com outros termos. 


Elementos de definição mais relevantes:  

- A criança com transtornos de aprendizagem tem uma linha desigual no seu desenvolvimento.

-
Os seus problemas de aprendizagem não são causados por pobreza ambiental.

-
Os problemas não são devidos a atraso mental ou transtornos emocionais.

Só é procedente falar em dificuldades de aprendizagem quando os alunos: 

- Têm um quociente intelectual normal, ou muito próximo da normalidade, ou ainda, superior.

- O seu ambiente sócio-familiar é normal.

- Não apresentam deficiências sensoriais nem afecções neurológicas significativas.

- O seu rendimento escolar é manifesto e reiteradamente insatisfatório.

Frequentemente apresentam problemas nos seguintes campos:

- Actividade motora: hiperatividade ou hipoatividade, dificuldade de coordenação…
 
-
Atenção: baixo nível de concentração, dispersão…
 
-
Área verbal: problemas na codificação/ decodificação simbólica, irregularidades na lectoescrita, disgrafias …
 
-
Emoções: desajustes emocionais leves, baixa auto-estima …
 
-
Memória: dificuldades de fixação …
 
-
Percepção: reprodução inadequada de formas geométricas, confusão entre figura e fundo, inversão de letras …
 
-
Sociabilidade: inibição participativa, pouca habilidade social, agressividade.

AVALIAÇÃO DAS D.A

Correia & Martins (1999), no livro “Dificuldades de aprendizagem: O que são? Como entendê-las?”, apresentam uma lista de verificação que tem por base a Escala de Comportamento Escolar (Correia, 1983) e uma lista de verificação do Centro Nacional Americano para as Dificuldades de Aprendizagem (1997), onde está agrupado um conjunto de sinais que podem ser indicadores de DA.


Para além dessa lista de verificação, os autores apresentam, no quadro seguinte, quatro listas por nível escolar (Levine, 1990), contendo um conjunto de primeiros sinais a observar no que diz respeito às DA.
 
 

fonte: http://omovimentodaescrita.blogspot.com.br/2010/04/o-que-sao-realmente-sao-as-dificuldades.html

Dificuldades na matemática

Dificuldades na Matemática
Noções necessárias para a aprendizagem da matemática

Correspondência: agrupar um objeto com outro (um lápis para cada aluno).
Classificação: agrupar os objetos em categorias de acordo com alguns critérios (cor, tamanho, formato).
Seriação: ordenar objetos de acordo com o tamanho (do menor para o maior) ou de acordo com o peso (mais pesado para o menos pesado).
Conservação: operação mental necessária para a construção do raciocínio lógico. Constituição de objeto permanente (a bola existe mesmo quando sai do campo de visão do bebê).
Reversibilidade: capacidade de fazer, desfazer e fazer novamente.
Proporcionalidade: compreensão das noções lógico-matemáticas, das frações e probabilidades.
Numeração: compreensão do sentido do número como sendo mais do que uma simples palavra, pois se refere a um todo, composto por unidades incluídas nele e guardando a relação de ordem com o restante dos números.
Valor posicional: unidade, dezena, centena, etc.
Compreender operações: é importante não somente saber as respostas das operações, mas compreendê-las de fato.
Resolução de problemas: é necessária a compreensão do texto, ordenar partes do problema e a compreensão lógica do enunciado e das competências do raciocínio abstrato que são utilizados para resolvê-lo.

Áreas de dificuldade que podem interferir no desempenho em matemática

Habilidades espaciais: as dificuldades em relações espaciais, distâncias, relações de tamanho e para formar sequências podem interferir em habilidades como: medir, estimar, resolver problemas e desenvolver conceitos geométricos.
Perseverança: são dificuldades para passar mentalmente de uma tarefa para outra,ou seja, atividade com vários passos para resolução.
Linguagem: são dificuldades para compreender termos como: primeiro, último, seguinte, maior que, menor que e outros.
Raciocínio abstrato: dificuldade na compreensão de conceitos abstratos, sendo necessária a utilização de material concreto para resolução.
Memória: dificuldade em relembrar informações que foram apresentadas.
Processo perceptivo: as dificuldades na área perceptiva acarretam problemas na leitura e escrita de quantidades, na realização de operações e em alguns casos na resolução de problemas.


Discalculia


ATIVIDADES
Estas atividades podem ser feitas com material concreto, onde a criança deverá apalpá-lo e distribuí-lo e em alguns casos pode ser utilizado em folha de atividade.

Este material pode ser: blocos lógicos; cartazes com figuras, sempre do tamanho adequado para ser trabalhado com a criança de acordo com sua faixa etária, objetos de uso diário como lápis de cor, tesoura, borracha, objetos que as crianças trazem de casa, elástico, prendedores de cabelo, carrinhos e outros.

Exercício de correspondência



Um para um/ material - blocos lógicos: fazer uma fileira de objetos iguais como quadrados e solicitar que a criança coloque um (1) círculo para cada quadrado.
Outra atividade que pode ser utilizada é colocar figuras de meninas (desenhos que podem ser facilmente encontrados na internet, impressos e plastificados para maior durabilidade) e solicitar que a criança distribua uma (1) flor (também figuras) para cada menina.
Conforme o desenvolvimento da habilidade da criança, a atividade pode se tornar mais complexa.
Utilize figura de 5 crianças e solicite à criança que distribua 10 balas entre elas.
Depois este trabalho pode ser feito com sobra.
Tem 5 crianças e 12 balas. Distribua entre elas. Sobra alguma? Quantas?
Em sala de aula o(a) professor(a) poderá facilmente utilizar este tipo de atividade.

Temos 5 crianças, quantos lápis vamos precisar?
Temos 3 tesouras para 5 crianças. Quantas faltarão?
Temos 20 alunos. Quantas folhas vão precisar?
E assim por diante, solicitando sempre que um ajudante entregue o material, fazendo revezamento entre os ajudantes.


Em casa não é diferente

Peça o auxilio da criança em algumas tarefas. Por exemplo: Solicite que a criança prepare a mesa para o almoço. São 4 pessoas que irão almoçar, quantos pratos precisaremos? Depois peça que coloque 1 (um) guardanapo para cada prato e depois os copos.




Outra atividade interessante é o agrupamento:
Faça fichas com números impressos e separe alguns blocos lógicos ou materiais diversos. Por exemplo:
5 quadrados
3 triângulos
2 círculos
7 retângulos

Solicite à criança que conte e coloque a ficha com o número correto ao lado de cada grupo.
Depois utilize o fator inverso. Coloque sobre a mesa algumas fichas com números e solicite à criança que coloque a quantidade correta de objetos.
Aproveite para observar se ela mistura os objetos no mesmo grupo ou se classifica como foi feito anteriormente (grupo de triângulo, círculos, etc).

Este material pode ser comprado pronto. São retângulos de madeira onde em uma extremidade há o número e na outra, que deverá ser encaixada, há o grupo de figuras.






OBS: A atividade acima pode ser usada, também, para treino dos numerais.






Exercícios de classificação



Entregar à criança vários objetos, com cores, formas e tamanhos variados e solicitar que separe em grupos, ou seja, classifique, mas não é necessário utilizar este termo, a não ser que a criança já tenha condições de entendê-lo.
Depois pergunte como ela separou e por que.
Em seguida peça à criança que pense em outra forma de separar (classificar), por exemplo: tamanho, textura e outros.


Em sala de aula pode ser feito o mesmo exercício em grupo, pedindo que cada grupo separe os objetos e os outros grupos deverão descobrir que propriedades dos objetos levaram em consideração para classificá-los.
Para crianças maiores pode utilizar cartões com alimentos, carros, animais, plantas e outros.


Exercícios de seriação.


Entregar á criança objeto de diferentes comprimentos e pedir que os coloque em ordem a partir do mais curto até o mais longo.
Podem ser utilizados copos de vários tamanhos, palitos, lápis e outros.


Uma ideia legal é pedir que a criança faça bolas de diversos tamanhos com massinha e organize da maior para a menor.


Em sala os alunos podem se organizar em fila por ordem de tamanho, do maior para o menor e do menor para o maior.


Valor posicional



Em sala de aula é comum utilizar o quadro de valor onde os alunos preenchem o campo unidade, dezena, centena etc, como podemos conferir abaixo.



Este tipo de atividade também pode ser utilizada, mas se for foi trabalhada de forma concreta antes, não terá resultado.



Existem alguns materiais bem interessantes que podem ser utilizado como: o ábaco e o material dourado.


Material dourado

O Material Dourado é um dos muitos materiais idealizados pela médica e educadora italiana Maria Montessori para o trabalho com matemática.
Embora especialmente elaborado para o trabalho com aritmética, a idealização deste material seguiu os mesmos princípios montessorianos para a criação de qualquer um dos seus materiais, a educação sensorial:
- desenvolver na criança a independência, confiança em si mesma, a concentração, a coordenação e a ordem;
- gerar e desenvolver experiências concretas estruturadas para conduzir, gradualmente, a abstrações cada vez maiores;
- fazer a criança, por ela mesma, perceber os possíveis erros que comete ao realizar uma determinada ação com o material;
- trabalhar com os sentidos da criança.

O material é composto por:
1 cubinho representa 1 unidade;
1 barra equivale a 10 cubinhos equivalem (1 dezena ou 10 unidades);
1 placa equivale a 10 barras ou 100 cubinhos (1 centena, 10 dezenas ou 100 unidades);
1 cubo equivale a 10 placas 1000 ou 100 barras ou 1000 cubinhos (1 unidade de milhar,10 centenas, 100 dezenas ou 1000 unidades).


Atividades



Explorando o Material Dourado


Objetivos:
- perceber as relações que existem entre as peças do material dourado;
- através das trocas, compreender que no Sistema de Numeração Decimal, 1 unidade da ordem imediatamente posterior corresponde a 10 unidades da ordem imediatamente anterior.
Metodologia:
Após permitir que os alunos, em grupos, brinquem livremente com o material dourado, o professor poderá sugerir as seguintes montagens:
- uma barra feita de cubinhos;
- uma placa feita de barras;
- uma placa feita de cubinhos;
- um bloco feito de barras;
- um bloco feito de placas.
O professor poderá estimular os alunos a chegarem a algumas conclusões perguntando, por exemplo:
- Quantos cubinhos eu preciso para formar uma barra?
- Quantas barras eu preciso para formar uma placa?
- Quantos cubinhos eu preciso para formar uma placa?
- Quantas barras eu preciso para formar um bloco?
- Quantas placas eu preciso para formar um bloco?
Nessa atividade, o professor também pode explorar conceitos geométricos, propondo desafios, como por exemplo:
- Quantos cubinhos você precisaria para montar um novo cubo?
- Que sólidos geométricos eu posso montar com 9 cubinhos?



Vamos fazer um trem?


Objetivo
- compreender os conceitos de sucessor e antecessor.
Metodologia
O professor pode pedir que os alunos façam um trem. O primeiro vagão do trem será formado por 1 cubinho, e os vagões seguintes por um cubinho a mais que o anterior. O último vagão será formado por 1 barra.
Quando as crianças terminarem de montar o trem o professor pode incentivá-las a desenhar o trem e registrar o código de cada vagão.
É importante que o professor considere as várias possibilidades de construção do trem e de registro encontradas pelos alunos.


Ábaco




O ábaco pode ser considerado como uma extensão do ato natural de contar nos dedos. Emprega um processo de cálculo com sistema decimal, atribuindo a cada haste um múltiplo de dez. Ele é utilizado ainda hoje para ensinar às crianças as operações de somar e subtrair.

Atividade
No caso do atendimento clínico é interessante que a psicopedagoga jogue junto, cada um com um ábaco; em sala de aula podem ser formados grupos.
O jogador deverá pegar os dois dados e jogá-los, conferindo o valor obtido. Este valor deverá ser representado no ábaco. Para representá-lo deverão ser colocadas argolas correspondentes ao valor obtido no primeiro pino da direita para a esquerda (que representa as unidades). Após deverá jogar os dados novamente.Quando forem acumuladas 10 argolas (pontos) no pino da unidade, o jogador deve retirar estas 10 argolas e trocá-las por 1 argola que será colocada no pino seguinte, representando 10 unidades ou 1 dezena. Nas rodadas seguintes, o jogador continua marcando os pontos, colocando argolas no primeiro pino da esquerda para a direita (casa das unidades), até que sejam acumuladas 10 argolas que devem ser trocadas por uma argola que será colocada no pino imediatamente posterior, o pino das dezenas.Vencerá quem colocar a primeira peça no terceiro pino, que representa as centenas.Com esta atividade inicial, é possível chamar a atenção para o fato do agrupamento dos valores, e que a mesma peça tem valor diferente de acordo com o pino que estiver ocupando.Possivelmente seja necessário realizar esta atividade mais de uma vez. É importante que os alunos possam registrá-la em seus cadernos, observando as estratégias e os pontos obtidos por cada um dos jogadores.


Escala Cuisenaire


Este é um material utilizado para a aprendizagem e treino das operações matemáticas, desde as mais simples até as mais complexas.O material Cuisenaire é constituído por uma série de barras de madeira, sem divisão em unidades e com tamanhos variando de uma até dez unidades. Cada tamanho corresponde a uma cor específica.

Atividades
Construindo um muro: Objetivo - Introduzir a operação de adição e a comutatividade. O professor pode apresentar uma barra e pedir que os alunos construam o resto do muro, usando sempre duas barras que juntas tenham o mesmo comprimento da peça inicial. As adições cujo total é dez ou maior que dez, assim como as adições com três ou mais parcelas podem ser introduzidas com essa atividade.



Construindo um muro especial: Objetivo-introduzir o conceito de multiplicação, enquanto soma de parcelas iguais. O professor pode pedir aos alunos que formem muros usando, por exemplo:


2 tijolos pretos



4 tijolos vermelhos



5 tijolos roxos



Após a realização das atividades concretamente, professor pode pedir que os alunos registrem como fizeram a construção do muro e discutir com seus alunos as formas de registro.


Adição1) Que peças eu posso juntar para formar a peça preta? Faça todas as combinações possíveis com duas peças, depois com três, depois...
Por exemplo:
(Uma verde clara com uma lilás)
2) Escreva uma sentença numérica para cada solução do item (1).
Por exemplo: (4 + 3 = 7)
3) Use apenas duas peças para “formar” a peça marrom. Encontre todas as soluções possíveis e escreva uma sentença matemática para cada solução.
4) Acabamos de criar a família da peça marrom. Crie a família para cada peça que seja maior ou igual a vermelha.
5) É possível criar a família do 11? Como seria?
6) Forme as famílias do 12, 13,... até o 20.

Multiplicação1) Duas peças vermelhas são do tamanho de que peça? Que relação tem este fato com a sentença: 2x2 = 4?
2) Três peças vermelhas são do tamanho de que peça? Que relação tem este fato com a sentença: 3x2 = 6?
3) Quatro peças vermelhas são do tamanho de que peças? E cinco?
4) Quanto dá 6x2? Que peças você usou?
5) Determine todos os produtos que podemos obter com as peças. Não deixe de registrá-los.
6) Quatro peças verdes claros são iguais a quantas peças lilás?


Tangram


Tangram é um quebra-cabeça originário da China e seu autor é desconhecido.
É formado por 05 triângulos, 01 paralelogramo e 01 quadrado (que juntos formam um novo quadrado).
Esse jogo é utilizado nas escolas para atrair o interesse das crianças pela Geometria e pela Matemática.
O quebra-cabeça consiste num primeiro momento, em permitir à criança a construção de formas geométricas, figuras humanas ou de animais, fazendo uso de todas as peças.
Num estágio mais avançado, pode ser utilizado em exercícios de cálculo da área de figuras; capacitar os alunos à definição de ângulos com o uso do transferidor, ou propor cálculo de perímetros e outros problemas matemáticos.
O Tangram pode ser feito a partir de madeira, cartolina, materiais plásticos, papel cartão ou E.V.A.


Artigo: A matemática e a experiência concreta
Autora: Cristiane Carminati Maricato
Livro:Dificuldades de aprendizagem,detecção e estratégias de ajuda.
Autoras:Ana Maria Salgado (Psicóloga)
Nora Espinosa Terán (Psicóloga)
http://educar.sc.usp.br/matematica/m2l2.htm

A Galinha Pintadinha: os segredos por trás do fenômeno

A Galinha Pintadinha: os segredos por trás do fenômeno
Lápis e caneta na mão e vamos à receita da A Galinha Pintadinha. Ingredientes: uma galinha azul, pintadinha é claro; algumas cantigas de roda, universalmente conhecidas; alguns desenhos coloridos.  Misture tudo, coloque no youtube e nas prateleiras. Pronto!! É só esperar e colher os frutos dos 300 milhões de acessos, milhares de CD´s e DVD´s vendidos, casas de show lotadas, etc…
Parece bem simples, mas não é possível que seja só isso… Quem já viu o encontro entre essa mídia infantil e seu público alvo (crianças de 0 a 5 anos) deve ser ficado com a pulga atrás da orelha. Os pequeninos ficam fascinados, paralisados, mudam o comportamento e parecem estar hipnotizados. A música, os traços, as cores, não tem nada de realmente diferente e novo nisso. Qual serão então os ingredientes secretos dessa receita?
Segundo o neurologista Leandro Teles: “O verdadeiro pulo do gato, ou da galinha, é ter sido feita sob medida para o cérebro infantil. Cumpre perfeitamente duas missões: Primeira: chamar atenção da criança, tarefa essa não muito difícil, convenhamos. Segunda: sustentar essa atenção, por minutos e até horas, isso sim não é para qualquer um”.
Convidamos o especialista para comentar alguns aspectos sobre a percepção infantil e os detalhes técnicos dessa produção de grande sucesso:
Dividiremos a análise na parte visual e parte sonora.

Parte Visual

Criança pequenas são ávidas por estímulos visuais, adoram objetos coloridos e movimentos. Gostam do simples, traços diretos e grosseiros. As cores vivas devem apresentar contraste, cada objeto tem uma cor completamente diferente e destoa do resto, nada precisa combinar, precisa saltar aos olhos.  Os personagens são apresentados no centro da mídia, movimentam-se em bloco, são pouco articulados, de expressão estática, isso evita que a complexidade tire o foco da criança.
Ainda sobre os personagens, esses não são desenhados ao acaso. Independente se são ET´s, dinossauros, humanos ou animais, eles geralmente têm a cabeça desproporcionalmente grande em relação ao corpo, assim como olhos desproporcionalmente grandes em relação a cabeça. Outra boa sacada da percepção infantil. As crianças se afeiçoam precoce e intensamente a face, tendo os olhos como primeiro ponto de reconhecimento do outro. Os bebês mamam em posição apropriada para fitar os olhos da mãe, comportamento ausente em outros mamíferos. Os produtores abusam de faces e olhos, colocando rosto com expressões “humanas” em animais e mesmo em coisas inanimadas, como o Sol (quem não se lembra do solzinho dos Teletubbies com cara de bebê), a Lua, estrelas, coração, etc… “Existe uma região cerebral especializada apenas em percepção e reconhecimento de faces”, explica o neurologista.
Alguns padrões visuais regulares e ritmados surgem eventualmente, como traços radiais partindo do centro, arco-íris com oscilação, círculos concêntricos, etc…, mais uma jogada para garantir o canal de atenção sustentada.

Parte Sonora

A sonorização dos vídeos também é peculiar e nada aleatória. Apresentam-se canções de melodia forte, marcante, simples e principalmente repetitiva. A harmonia cíclica funciona como um pêndulo de hipnose. É muito facilmente aprendida e gruda no cérebro de crianças e mesmo de adultos. O timbre vocal é específico de canções infantis.

Junção entre imagem e som

aqui talvez o grande trunfo da produção. A canção e a animação são expostas sincronicamente. A animação pulsa conforme a música, os personagens oscilam no tempo da melodia. Para complementar tem até uma bolinha que pula ritmada sobre a letra da música, dando ainda mais balanço e integrando definitivamente som e vídeo. “Isso gera entradas paralelas e complementares tanto em regiões cerebrais auditivas, mais laterais, como em regiões visuais, posteriores, exigindo um engajamento cerebral para unificá-los”, atenta o especialista.
Como podemos ver, existem mais ingredientes secretos do que nossa superficial avaliação poderia imaginar, e deve haver muito mais. Mas para encerrar, será que a exposição intensa à Galinha Pintadinha pode fazer mal a nossas crianças?
“Realmente não vejo problema nenhum com esse tipo de exposição, acho até um estímulo interessante e uma oportunidade para integração social, atividade física e musicalização precoce” conclui o neurologista, mas resalta: “o problema nasce com uso inadequado, excessivo e sem integração com os pais, familiares ou outras crianças, entrando na rotina em detrimento de outras atividades mais apropriadas”.

quinta-feira, 23 de maio de 2013

Quando levar sua criança a um fonoaudiólogo ?


Sobre H1n1

Essa questão da gripe H1n1 me deixa indignada,
Como pode as pessoas não fazerem o básico que é lavar as mãos ?
 Evitaria não só esta como muitas outras doenças, ontem a noite eu estava observando umas crianças brincando aqui no prédio, na quadra e os pais dando carne de churrasco pra elas sem pedir que elas lavassem as mãos antes de se alimentar, com os próprios filhos é assim imagina com o resto.
O mínimo de higiene é o que considero básico e fundamental para a saúde em geral.